ALL ABOUT GROUPING

Rollups, Cubes, Grouping Sets and their inner workings

Rob van Wijk
CIBER Nederland

rob.van.wijk@ciber.nl

December, 2009
Version 1.0

Whenever you need to aggregate your data to give your users useful summary
information, you need aggregate functions and SQL’s group by clause. It is part of
every basic SQL course, and as a database administrator, data warehouse developer or
application developer, you’re probably very familiar with this clause already. Oracle
extended the group by clause in version 8 with rollups and cubes, and in version g with
grouping sets, giving lots of extra possibilities. This article explores these extra
possibilities, explaining how they work, both in terms of functionality, as well as in
terms of how they are executed internally.

1 GROUP BY CLAUSE

The purpose of the group by clause is to group an incoming set of rows to one row per distinct
value inside the set of expressions in the group by clause. In a basic SELECT ... FROM ... WHERE
... GROUP BY query, the incoming set is the set that is formed after joining the tables and
applying the predicates specified in the where clause. If the incoming set contains N rows (N =
1), then the result set always contains M rows, where M is an integer between and including 1
and N. An example using the well known EMP table:

SQL> select sum(sal)

2 from emp
3 group by deptno
4 /
SUM (SAL)
9400
10875
8750

3 rows selected.
The incoming set is the table EMP, containing 14 rows (N=14). The group by clause contains the

column deptno, meaning a row is created per distinct value of deptno. Column deptno contains
three different values, 10, 20 and 30, so the result sets contains three rows (M=3).

All About Grouping Page 1/18 Rob van Wijk

At the extreme ends of 1 <M =< N, we have M=N and M=1. If every row in the incoming set is a
group on its own, then M equals N. This is the case when the group by clause contains a set of
expressions that is unique. For example, table EMP’s primary key is the empno column. When

you group by empno, you get a result set containing 14 rows, so here M equals N:

SQL> select sum(sal)
2 from emp
3 group by empno
4 /

SUM (SAL)

14 rows selected.

The other extreme end is when every row in the incoming set is placed in the same group,
leading to a result set of only 1 row. For example, if you group by a constant value, or a column

containing only one distinct value:

SQL> select sum(sal)
2 from emp
3 group by 1
4 /

SUM (SAL)

29025

1 row selected.

Or when you omit the group by clause altogether:

SQL> select sum(sal)
2 from emp

3/

SUM (SAL)

1 row selected.

Which is shorthand for grouping by the empty set, which is denoted as ():

SQL> select sum(sal)
2 from emp
3 group by ()
4 /

1 row selected.

All About Grouping Page 2/18

Rob van Wijk

In all three cases above, M equals 1.

2 GROUPING SETS

Grouping sets were introduced in version 9, after rollups and cubes were already introduced in
version 8. In Oracle’s documentation, the order in which they are explained is: rollup, cube and
then grouping sets. However, it is my experience that rollups and cubes are harder to
understand without completely understanding the concept of grouping sets. By reversing the
order here, and starting with explaining grouping sets, I hope to make the subject easier to
understand.

First of all, what is a grouping set? A single grouping set is exactly like a regular group by clause
that you already know. A regular group by clause contains a set of expressions, and the
expressions are separated by commas. In a formula:

GROUP BY <set of expressions>

GROUP BY GROUPING SETS (<set of expressions>)

So when you have written a regular group by query in the past, you have been using a single
grouping set already, and you could also have used the grouping sets notation. The point of the
more verbose grouping sets notation is that it allows you to specify more than one grouping set,
where the regular group by can only handle one grouping set. Or, in other words, with grouping
sets, you can apply several regular group by clauses to the same incoming set. All grouping sets
are working on the same incoming set and all individual result sets are put together with a
union all operator. In a not-so-exact formula, but illustrating the point:

... GROUP BY GROUPING SETS (<set of expressions>, , ..., <set of expressions>y) ...

... GROUP BY <set of expressions>, ...
UNION ALL

UNION ALL
... GROUP BY < set of expressions>x ...

The rest of the query containing the grouping sets clause - marked with the triple dots before
and after the grouping sets clause - is repeated in each union all part. The select clause is the
only part that can be different, since not all non-aggregated expressions in the select clause
necessarily appear in the grouping set. In this case, the expression in the select clause in the
union all part should read as “null”. An example:

SQL> select empno

2 , deptno

3 , sum(sal)

4 from emp

5 group by grouping sets ((empno,deptno), deptno, ())
6 order by deptno

7 , empno

8 /

EMPNO DEPTNO SUM(SAL)
7782 10 2450
7839 10 5000
7934 10 1300

10 8750

All About Grouping Page 3/18 Rob van Wijk

7369 20 800

7566 20 2975
7788 20 3000
7876 20 1100
7902 20 3000
20 10875

7499 30 1600
7521 30 1250
7654 30 1250
7698 30 2850
7844 30 1500
7900 30 950
30 9400

29025

18 rows selected.

As you can see by the output, this query contains three grouping sets: The first one selects the
14 original rows from EMP, the second one produces three rows containing department level
aggregates where empno is null and deptno is not null. And the third grouping set, the empty
set, produces the grand total where both empno as well as deptno are null. According to the

earlier mentioned formula above, this query can be rewritten to:

SQL> select empno
, deptno
, sum(sal)
from emp
group by empno
, deptno
union all
select empno
, deptno
10 , sum(sal)
11 from emp
12 group by deptno
13 union all
14 select empno

LVWoNLAWN

15 , deptno
16 , sum(sal)
17 from emp

18 group by ()
19 order by deptno
20 , empno
21 /
select empno
*
ERROR at line 8:
ORA-00979: not a GROUP BY expression

But this doesn’t work, because the select clause for union all parts 2 and 3 now contains non-
aggregated expressions that do not appear in the group by clause. So the equivalent query is
one where the non-appearing non-aggregated expressions in the select list are replaced by null:

SQL> select empno
2 , deptno
3 , sum(sal)
4 from emp
5 group by empno
6 , deptno
7 union all
8 select null empno
9 , deptno
10 , sum(sal)
11 from emp
12 group by deptno
13 union all
14 select null empno

15 , null deptno
16 , sum(sal)
All About Grouping

Page 4/18

Rob van Wijk

17 from emp
18 group by ()
19 order by deptno

20 , empno
21 /

EMPNO DEPTNO SUM (SAL)
7782 10 2450

7839 10 5000

7934 10 1300

10 8750

7369 20 800

7566 20 2975

7788 20 3000

7876 20 1100

7902 20 3000

20 10875

7499 30 1600

7521 30 1250

7654 30 1250

7698 30 2850

7844 30 1500

7900 30 950

30 9400

29025

18 rows selected.

You might have asked yourself, why the first grouping set is (empno,deptno), and not just
(empno). The latter is certainly not wrong. It’s just that by specifying deptno as well, the deptno
column can appear in the select list, which leads to a nicer output.

With the grouping sets notation, you can specify very precisely which grouping sets you want
your query to return. No additional functionality is needed per se.

3 ROLLUP

So a rollup doesn’t provide extra functionality over grouping sets: every query with a rollup can
be expressed with grouping sets as well. A rollup “just” provides a shorter alternative for a type
of aggregation query that is very common in management reports. In such a report you typically
report data at some aggregation level, and then provide subtotals at higher aggregation levels,
probably resulting in the grand total. A rollup can be expressed in grouping sets notation like
this:

GROUP BY ROLLUP (set,, ..., setx)

GROUP BY GROUPING SETS
((set, U... Usety), (set, U... Usety,), ..., set,, ())

So you start out with a grouping sets containing all sets from the rollup, then the next grouping
sets is one level higher, where you aggregate over the last set. This is repeated until you reach
the empty grouping set, or in other words, the grand total.

From the formula you can deduce that a rollup with N sets, always leads to N+1 grouping sets. In
the example below, the rollup contains 3 sets, so it leads to 4 grouping sets:

SQL> select deptno

2 , Jjob
3 , mgr
4 , empno

All About Grouping Page 5/18 Rob van Wijk

5 , sum(sal)
6 from emp
7 group by rollup ((deptno), (job,mgr), (empno))
8 order by deptno
9 , Jjob
10 , mgr
11 , empno
12 /
DEPTNO JOB MGR EMPNO SUM (SAL)
10 CLERK 7782 7934 1300
10 CLERK 7782 1300
10 MANAGER 7839 7782 2450
10 MANAGER 7839 2450
10 PRESIDENT 7839 5000
10 PRESIDENT 5000
10 8750
20 ANALYST 7566 7788 3000
20 ANALYST 7566 7902 3000
20 ANALYST 7566 6000
20 CLERK 7788 7876 1100
20 CLERK 7788 1100
20 CLERK 7902 7369 800
20 CLERK 7902 800
20 MANAGER 7839 7566 2975
20 MANAGER 7839 2975
20 10875
30 CLERK 7698 7900 950
30 CLERK 7698 950
30 MANAGER 7839 7698 2850
30 MANAGER 7839 2850
30 SALESMAN 7698 7499 1600
30 SALESMAN 7698 7521 1250
30 SALESMAN 7698 7654 1250
30 SALESMAN 7698 7844 1500
30 SALESMAN 7698 5600
30 9400

29025
28 rows selected.
Applying the formula above with set, = (deptno), set, = (job,mgr) and set, = (empno) leads to:
grouping sets ((deptno,job,mgr,empno), (deptno,job,mgr), (deptno), ()). The next query is the

same as the previous, only written using grouping sets notation instead of rollup. As you can
see, the syntax is more verbose, but the semantics are the same.

SQL> select deptno

2 , Jjob
3 , mgr
4 , empno
5 , sum(sal)
6 from emp
7 group by grouping sets
8 ((deptno, job, mgr, empno)
9 , (deptno, job, mgr)
10 , (deptno)
11 0
12)
13 order by deptno
14 , Jjob
15 , mgr
16 , empno
17 /
DEPTNO JOB MGR EMPNO SUM (SAL)
10 CLERK 7782 7934 1300
10 CLERK 7782 1300
10 MANAGER 7839 7782 2450
10 MANAGER 7839 2450

All About Grouping Page 6/18 Rob van Wijk

10 PRESIDENT 7839 5000

10 PRESIDENT 5000
10 8750
20 ANALYST 7566 7788 3000
20 ANALYST 7566 7902 3000
20 ANALYST 7566 6000
20 CLERK 7788 7876 1100
20 CLERK 7788 1100
20 CLERK 7902 7369 800
20 CLERK 7902 800
20 MANAGER 7839 7566 2975
20 MANAGER 7839 2975
20 10875
30 CLERK 7698 7900 950
30 CLERK 7698 950
30 MANAGER 7839 7698 2850
30 MANAGER 7839 2850
30 SALESMAN 7698 7499 1600
30 SALESMAN 7698 7521 1250
30 SALESMAN 7698 7654 1250
30 SALESMAN 7698 7844 1500
30 SALESMAN 7698 5600
30 9400

29025

28 rows selected.

4 CUBE

A cube doesn’t provide extra functionality over grouping sets either: also every query with a
cube can be expressed with grouping sets. A cube provides a shorter alternative for queries
typically used in online analytical processing. If you want to provide the user with aggregated
results along every possible dimension, for example in a materialized view, then a cube comes
in handy. A cube is hard to express in grouping sets notation in generic terms, but hopefully
this one works:

GROUP BY CUBE (set, ..., setx)

GROUP BY GROUPING SETS
(all possible combinations between (' set, U... Usetx) and ())

An example to make it a little clearer: “group by cube (set,, set,)” is the same as “group by
grouping sets ((set, U set,), set, , set,, ())”. All possible combinations of N sets in the cube,
always lead to 2" grouping sets.

In the next example, you see a cube with 3 sets leading to 8 (= 2°) grouping sets:

SQL> select deptno

job

mgr

empno

sum(sal)

from emp

group by cube ((deptno), (job,mgr), (empno))

order by deptno
, Job

10 , mgr

11 , empno

12 /

NN N N

LVWoONLAWN

DEPTNO JOB MGR EMPNO SUM (SAL)

10 CLERK 7782 7934 1300

All About Grouping Page 7/18 Rob van Wijk

10 CLERK 7782

...<rows 3-76 deleted>...

78 rows selected.

7934

1300

1300
29025

Transforming the cube ((deptno), (job,mgr), (empno)) to grouping sets notation using the “all
possible combinations” formula leads to grouping sets ((deptno,job,mgr,empno),
(deptno,job,mgr), (deptno,empno), (job,mgr,empno), (deptno), (job,mgr), (empno), ()). So the
next query is semantically the same as the previous one:

SQL> select deptno
2 , Jjob

3 , mgr

4 , empno

5 , sum(sal)

6 from emp

7 group by grouping sets
8

9

((deptno, job, mgr, empno)

(deptno, job,mgr)
(deptno, empno)

4
11 , (job,mgr, empno)
12 , (deptno)
13 , (job,mgr)
14 , (empno)
15 ;0
16)
17 order by deptno
18 , Jjob
19 , mgr
20 , empno
21 /
DEPTNO JOB MGR EMPNO SUM (SAL)
10 CLERK 7782 7934 1300
10 CLERK 7782 1300
...<rows 3-76 deleted>...
7934 1300
29025

78 rows selected.

5 CALCULATING WITH GROUPING SETS

In a group by clause, you can combine a regular group by clause with one or more of the
extensions. For example: “group by deptno, rollup(empno), cube(job,mgr), grouping sets
(ename)” is perfectly valid syntax. But what does it mean? And how many grouping sets does

this yield?

It’s nothing frightening, really. We know by now that everything can be rewritten to grouping
sets notation. So an equivalent group by clause, is this one: “group by grouping sets(deptno),
grouping sets(empno,()), grouping sets((job,mgr),job,mgr,()), grouping sets(ename)”. Now
everything is expressed in the same way. And then we can calculate. We do that by applying a
Cartesian product. Every grouping set in one part is unioned with every grouping set in the

other part. In a formula:

GROUP BY GROUPING SETS (set, , ..., sety)
, GROUPING SETS (setx., , ..., Setx.y)

All About Grouping

GROUP BY GROUPING SETS

Page 8/18 Rob van Wijk

(set, Usety,,, ..,set, Usetx,y

y eee

, Setx Usety,,, ...,setx Usetx,y)

In the first mentioned example in this paragraph, this formula can be applied three times. First
let’s apply it to the first and second grouping sets occurrences:

GROUP BY GROUPING SETS (deptno)
, GROUPING SETS (empno,())
, GROUPING SETS ((job,mgr),job,mgr,())
, GROUPING SETS (ename)

GROUP BY GROUPING SETS ((deptno,empno),deptno)
, GROUPING SETS ((job,mgr),job,mgr,())
, GROUPING SETS (ename)

Note that (deptno,()) equals (deptno). Then apply the formula again on the new grouping sets
occurrence and the original third one:

GROUP BY GROUPING SETS ((deptno,empno),deptno)
, GROUPING SETS ((job,mgr),job,mgr,())
, GROUPING SETS (ename)

GROUP BY GROUPING SETS
((deptno,empno,job,mgr),(deptno,empno,job),(deptno,empno,mgr),(deptno,empno)
,(deptno,job,mgr),(deptno,job),(deptno,mgr),deptno)

, GROUPING SETS (ename)

And apply it a last time:

GROUP BY GROUPING SETS
((deptno,empno,job,mgr),(deptno,empno,job),(deptno,empno, mgr),(deptno,empno)
,(deptno,job,mgr),(deptno,job),(deptno,mgr),deptno)

, GROUPING SETS (ename)

GROUP BY GROUPING SETS ((deptno,empno,job,mgr,ename),(deptno,empno,job,ename)
,(deptno,empno, mgr,ename),(deptno,empno,ename)
,(deptno,job,mgr,ename),(deptno,job,ename),(deptno,mgr,ename),(deptno,ename))

And the end result is 8 grouping sets (1 * 2 * 4 * 1). You may also want to calculate the other way

round. In that case you’ll want to factor the common elements out of each grouping set. Each
grouping set contains the columns deptno and ename. So you can rewrite this to:

GROUP BY deptno
, ename
», GROUPING SETS ((empno,job,mgr),(empno,job)
,(empno,mgr),empno,(job,mgr),job,mgr,())
And you may recognize the last one as a cube. So a final rewrite leads to:

GROUP BY deptno, ename, CUBE(empno,job,mgr)

I'm not saying the last one is the best. I know some people prefer to use grouping sets notation
all the time. You have to agree that the last one is quite compact though.

All About Grouping Page 9/18 Rob van Wijk

Another general rule you might have spotted from above is the next one, where the rollup
contains just one set:

GROUP BY ROLLUP (set,), CUBE (set,, ..., sety)

GROUP BY GROUPING SETS (set, ()
, GROUPING SETS (all possible combinations between (set, U... Usety) and ())

GROUP BY GROUPING SETS (all possible combinations between (set, U... Usety) and (set,))
,GROUPING SETS (all possible combinations between (set, U... Usetx) and ())

GROUP BY GROUPING SETS (all possible combinations between (set, U... Usety) and ())

GROUP BY CUBE (set,, ..., setx)

6 SUPPORTING FUNCTIONS

Oracle has three supporting functions for the group by clause: GROUPING, GROUPING_ID and
GROUP_ID. That sounds similar enough to have to look each one up each time you need them.
The supporting functions all return integers to help you determine inside which grouping set
you are. Since a column value appears as null when aggregating over the column, you might
think you can use IS NULL or IS NOT NULL. This doesn’t work however, when the column itself
can contain null values. The supporting functions help you to determine whether a null value is
from the column itself or because it was aggregated over.

The GROUPING function takes one expression from the group by clause as an argument and
returns a 1 if the value is null because it represents the set of all values. It returns o if it
represents a regular row. An example:

SQL> select mgr

2 , sum(sal)

3 , grouping (mgr)
4 from emp

5 group by rollup (mgr)
6 /

MGR SUM(SAL) GROUPING (MGR)

7566 6000 0
7698 6550 0
7782 1300 0
7788 1100 0
7839 8275 0
7902 800 0

5000 0

29025 1

8 rows selected.

The last two rows in this example have their mgr value set to null, but only the last row, with
sum(sal) 29025, represents the set of all values.

If you have a large set of expressions in your group by clause, then you could get a large Boolean
expression to determine the grouping set you are in, something like “grouping(expr,) = o and
grouping(expr,) =1 and grouping(expr;) = o and grouping(expr,) =1”. This can become
cumbersome and that’s when the GROUPING_ID function comes in handy. The function

All About Grouping Page 10/18 Rob van Wijk

accepts one or more expressions as its arguments. It applies the GROUPING function to each of
its arguments and turns them into a string of zeros and ones and returns that as a number. So
the above expression can also be written as “grouping_id(expr, ,expr, ,expr; ,expr,) = 57, where 5
is “o101”.

And then there is the rarely used GROUP_ID function. This one is only useful when you
specified duplicate grouping sets. If you don’t specify duplicate grouping sets, the GROUP_ID
function always returns o. For the first duplicate, it returns a 1, for the next a 2, and so on. An
example:

SQL> select deptno
, sum(sal)
, group_id()
from emp
group by grouping sets (deptno, deptno, (), (), ())
order by deptno
/

NN Wb

DEPTNO SUM(SAL) GROUP_ID ()

10 8750 1
10 8750 0
20 10875 0
20 10875 1
30 9400 1
30 9400 0
29025 1
29025 0
29025 2

9 rows selected.

7 HOW DOES ORACLE IMPLEMENT THE GROUP BY EXTENSIONS?

Up until Oracle 10g release 2, most grouping operations were performed by the SORT GROUP
BY operation. There are several other operations that can be chosen by the optimizer as well,
but they are far less common. A good overview of all operations can be found on the website of
Julian Dykel). Oracle RDBMS version 10.2.0.1 introduced the HASH GROUP BY operation, which
is a more efficient way to perform groupings in most cases. Oracle doesn’t document how
exactly these operations are performed. However, by their name we can rather safely assume
what each operation does. A SORT GROUP BY will sort the incoming set, traverse the ordered
set and compare each row with its predecessor; if it encounters the same value, then the row is
placed in the same group and if a different value is encountered, then a new group is created. A
HASH GROUP BY will build an in-memory hash table to hold the group rows. Each row from the
incoming set will be hashed and placed into the hash table. When the hash table doesn’t fit into
memory, it will spill to disk. This is not only true for a HASH GROUP BY: both HASH GROUP BY
and SORT GROUP BY need a SQL workarea in the PGA-memory of the session. When the
workarea becomes too small, the operation is divided into smaller pieces. Some pieces are
processed in memory, while the remainder is written to temporary disk storage for later
processing. If a query does not contain an order by clause, I have not been able to let the
optimizer come up with a plan using the SORT GROUP BY operation in a version >= 10.2.0.1.

Now, let’s have a look at the operations needed for rollups, cubes and grouping sets. Please
note that all queries below were executed in version 11.1.0.7, and checked in 10.2.0.1 and 11.2.0.1
to be the same. First, let’s have a look at how a rollup is calculated:

SQL> select /*+ gather_plan statistics */
2 deptno
3 , empno

All About Grouping Page 11/18 Rob van Wijk

, sum(sal)
from emp
group by rollup (deptno, empno)

N o O

DEPTNO EMPNO SUM (SAL)

10 7782 2450
. <rows 2-17 deleted> ...
29025

18 rows selected.

SQL> select * from table (dbms xplan.display cursor(null,null, 'iostats last'))
2 /

PLAN TABLE OUTPUT

SQL ID 2d0yuq4g2z951, child number 0

select /*+ gather _plan statistics */ deptno , empno ,
sum(sal) from emp group by rollup (deptno, empno)

Plan hash value: 52302870

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
/ 0 | SELECT STATEMENT / / 1 / 18 [00:00:00.01 | 7 |
/ 1 | SORT GROUP BY ROLLUP| / 1/ 14 | 18 |/00:00:00.01 | 7 |
/ 2 | TABLE ACCESS FULL | EMP | 1/ 14 | 14 |/00:00:00.01 | 7 |

15 rows selected.

A rollup always performs either a SORT GROUP BY ROLLUP or a SORT GROUP BY ROLLUP
NOSORT operation. Possibly, this is worded too strong, but I have not witnessed other
operations so far.

The SORT GROUP BY ROLLUP operation uses the SORT GROUP BY operation for the lowest
level grouping set: the one containing all expressions of the rollup. The output rows for each
subsequent grouping set can always be calculated using the output rows of the previous
grouping set as their incoming set. And this previous set of output rows is already sorted as
well. Therefore, a SORT GROUP BY ROLLUP can be thought of as recursively implementing the
SORT GROUP BY operation, sorting only at the first recursion. In the above example the entire
EMP table is read using a full table scan. These 14 rows are the incoming set for processing the
first grouping set (deptno,empno). The SORT GROUP BY operation is applied, leading to 14
group rows, sorted. After that, grouping set (deptno) gets processed by using the 14 output rows
of grouping set (deptno,empno) as its incoming set. Again, a SORT GROUP BY is performed,
without actually having to sort. So it really is a SORT GROUP BY NOSORT operation leading to 3
rows. And finally the grandtotal, grouping set (), is calculated by using the 3 output rows of
grouping set (deptno) and again performing a SORT GROUP BY NOSORT.

If the incoming set is already ordered, for example because the rows are retrieved by an INDEX
FULL SCAN, then you'll see a SORT GROUP BY NOSORT ROLLUP. This one behaves exactly the
same as a SORT GROUP BY ROLLUP, but it doesn’t use a SORT GROUP BY for the first grouping
set, but a SORT GROUP BY NOSORT. You can see that happening when you create an index on
(deptno,empno) and run the same query as above. The plan then looks like this:

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
/ 0 | SELECT STATEMENT / / 1 / 18 [00:00:00.01 | 4 |
/ 1 | SORT GROUP BY NOSORT ROLLUP | / 1 14 | 18 /00:00:00.01 | 4 |

All About Grouping Page 12/18 Rob van Wijk

TABLE ACCESS BY INDEX ROWID| EMP |
INDEX FULL SCAN | I1 /

14 | 14 [00:00:00.01 | 4
14 | 14 [00:00:00.01 | 2

—_—

—_~—

The number of performed sort operations was checked by performing this query right before
and after the queries above:

SQL> select sn.name
, ms.value
from v$mystat ms
, vS8statname sn
where ms.statistic# = sn.statistic#
and sn.name like '$%sort$%'

NounsnwN

/

The SORT GROUP BY ROLLUP performs 1 memory sort and sorts 14 rows. The SORT GROUP BY
ROLLUP NOSORT performs o sorts.

A cube is always calculated by performing three operations: a SORT GROUP BY, GENERATE
CUBE and another SORT GROUP BY. Again, this may be worded too strong, but I have not seen
other plans yet. An example of the calculation of a cube:

SQL> select /*+ gather plan statistics */

2 deptno
3 , Jjob
4 , sum(sal)
5 from emp
6 group by cube (deptno, job)
7
DEPTNO JOB SUM (SAL)
29025
<rows 2-17 deleted> ...
30 SALESMAN 5600

18 rows selected.

SQL> select * from table (dbms xplan.display cursor(null,null, 'iostats last'))
2 /

PLAN TABLE_ OUTPUT

SQL ID d706ztmnyxft3, child number 0

select /*+ gather _plan statistics */ deptno , job ,
sum(sal) from emp group by cube (deptno, job)

Plan hash value: 3627207636

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |

SELECT STATEMENT
SORT GROUP BY

/ / 18 [00:00:00.01
/ /
| GENERATE CUBE /
/ /
/ /

/ /
/ 11 | 18 |00:00:00.01
/ 11 | 36 /00:00:00.01
SORT GROUP BY / /
TABLE ACCESS FULL / /

11 9 /00:00:00.01
14 14 /00:00:00.01

—_———_———
NWwWhko
R HRRRKRR

/
/
/
/
/

—_—————
N N N NN
—_—————

EMP

17 rows selected.

For a cube, it is not possible to use the same operations as used in a rollup. The difference is,
there might be more than one grouping set that needs the same incoming set. For example,
both grouping sets (deptno) and (job) would need the incoming set of (deptno,job). To
calculate a cube, we need the incoming set duplicated as many times as there are grouping sets.

All About Grouping Page 13/18 Rob van Wijk

This is what the GENERATE CUBE operation does: duplicate the intermediate result sets by the
number of grouping sets, which equals 2°* ™" >, To do this as efficient as possible, the number
of rows in the incoming set is reduced by first applying a SORT GROUP BY operation on the
lowest level grouping set, the one containing all sets in the cube. After the GENERATE CUBE
step, a SORT GROUP BY operation is performed for each of the dimensions of the cube. This
one puzzled me somewhat: it clearly says that 1 SORT GROUP BY was performed, where I would
have expected the number of “Starts” to be 2****"" " and the operation to be SORT GROUP BY
NOSORT. The statistics in v$mystat using the same query as mentioned earlier, reveals that 2
memory sorts are performed and that 50 rows were sorted. This indicates that the first sort
from step 3 sorted 14 rows and that the second sort was indeed only one SORT GROUP BY
operation that sorted the 36 rows (14 + 36 = 50). So the last SORT GROUP BY operation is able to
compute all grouping sets in one pass. This must mean that the GENERATE CUBE does some
more than just duplicating the intermediate set; it nullifies the group by columns according to
the cube. Because of this nullifying, a single SORT GROUP BY operation afterwards is able to
produce the result for all grouping sets.

In the example you can see the story above when looking at the “A-rows” column. The first step
is a full table scan of EMP, leading to 14 rows. Those 14 rows are then grouped by (deptno,job).
There are g different combinations of deptno and job, so this leads to 9 rows. The GENERATE
CUBE operation expands this set 4 times to four sets of g rows, a total of 36 rows. It does so by
transforming this set:

DEPTNO JOB SUM (SAL)
20 CLERK 1900
30 SALESMAN 5600
20 MANAGER 2975
30 CLERK 950
10 PRESIDENT 5000
30 MANAGER 2850
10 CLERK 1300
10 MANAGER 2450
20 ANALYST 6000

to this set:

DEPTNO JOB SUM (SAL)
20 CLERK 1900
30 SALESMAN 5600
20 MANAGER 2975
30 CLERK 950
10 PRESIDENT 5000
30 MANAGER 2850
10 CLERK 1300
10 MANAGER 2450
20 ANALYST 6000
20 1900
30 5600
20 2975
30 950
10 5000
30 2850
10 1300
10 2450
20 6000

CLERK 1900
SALESMAN 5600
MANAGER 2975
CLERK 950
PRESIDENT 5000
MANAGER 2850
CLERK 1300
MANAGER 2450
ANALYST 6000

All About Grouping Page 14/18 Rob van Wijk

1900
5600
2975
950

5000
2850
1300
2450
6000

The last step is applying a SORT GROUP BY operation to the 36 rows. The set is grouped by
(deptno,job), leading to 18 rows, which are exactly the 18 group rows corresponding to the four
grouping sets (deptno,job), (deptno), (job) and (). Expressed in SQL, this cube is calculated like
this:

with emp after first sortgroupby as
(select deptno
, job
, sum(sal) sumsal
from emp
group by deptno
, job

, emp_after generate cube as
(select deptno, job, sumsal from emp after first sortgroupby
union all
select deptno,null,sumsal from emp_after first sortgroupby
union all
select null, job, sumsal from emp after first sortgroupby
union all
select null,null, sumsal from emp after first sortgroupby
)
select deptno
, Jjob
, sum(sumsal)
from emp_after generate cube
group by deptno
, job

Both rollup and cube are special in the sense that all output rows can be obtained by scanning
the incoming set only once to calculate the lowest level grouping set. And then all other
grouping sets are subsets of that first grouping set. However, in general, with grouping sets,
this is not the case. You can have two grouping sets (deptno) and (job), without having a
grouping set (deptno,job). In such a scenario, you would need to scan the incoming set more
than once. Oracle solves this problem by introducing two temporary tables, an input table and
an output table. The incoming set is loaded into the input table and when computing the
grouping sets, the output rows are stored into the output table. The latter is used for returning
the result set. An example:

SQL> select /*+ gather plan statistics */

2 deptno
3 , Jjob
4 , mgr
5 , sum(sal)
6 from emp
7 group by grouping sets (deptno, job, mgr)
8
DEPTNO JOB MGR SUM(SAL)
7839 8275
<rows 2-14 deleted> ...
10 8750

15 rows selected.

SQL> select * from table (dbms xplan.display cursor(null,null, 'iostats last'))

All About Grouping Page 15/18 Rob van Wijk

2 /

PLAN TABLE_ OUTPUT

SQL ID cgn9d7t3atmbd, child number 0

select /*+ gather _plan statistics */
mgr , sum(sal) from emp group by grouping sets (deptno, job,mgr)

Plan hash value: 3776576756

deptno , Jjob

| Id | Operation | Name | Starts | E-Rows | A-Rows |
/ 0 | SELECT STATEMENT / / 1] / 15 |
/ 1 | TEMP TABLE TRANSFORMATION | / 1 / 15 |
/ 2 | LOAD AS SELECT / / 1 / 1]
/ 3 TABLE ACCESS FULL | EMP / 1 14 | 14 |
| 4| LOAD AS SELECT / / 1 / 1
| 5 HASH GROUP BY / / 1] 1 71
/ 6 | TABLE ACCESS FULL | SYS_TEMP_ OFD9D6603_B63617 | 1 1 14 |
/ 7 LOAD AS SELECT / / 1 / 1]
/ 8 | HASH GROUP BY / / 1 1 5/
/ 9 | TABLE ACCESS FULL | SYS_TEMP_ OFD9D6603_B63617 | 1 1 14 |
| 10 | LOAD AS SELECT / / 1 / 1
| 11 | HASH GROUP BY / / 1 1 31
12	TABLE ACCESS FULL	SYS_TEMP OFD9D6603 B63617	1 1 14
13	VIEW / / 1 1 15		
14	TABLE ACCESS FULL	SYS_TEMP OFD9D6604_B63617	1 1 15

27 rows selected.

Note that I removed the columns A-time, Buffers, Reads and Writes from the plan output for
better readability. The plan starts with step 3, full scanning table EMP. The rows from EMP are
copied into the input table SYS_ TEMP_oFDgD6603_B63617 (step 2) using direct path. This table
is used as a starting point for calculating the three grouping sets (deptno), (job) and (mgr) and
is therefore scanned in full, three times. The result of each grouping set is copied into the
output table SYS_TEMP_oFDgD6604_B63617. At first glance, the name of the output table looks
exactly the same as the input table. Note however the “4_” instead of the “3_". Steps 4, 7 and 10
represent the copying of the results of the grouping sets into the output table. At the end the
output table is full scanned and returned via a VIEW and TEMP TABLE TRANSFORMATION
operation. The way the output table is filled differs per query, but there grouping sets queries
always use temporary input and output tables.

But do grouping sets queries also use temporary input and output tables, even when the
grouping sets query can be transformed to a rollup or cube? Let’s start with a grouping sets
query that can be transformed to a rollup:

SQL> select /*+ gather plan statistics */

2 deptno

3 , Jjob

4 , sum(sal)

5 from emp

6

7/

DEPTNO JOB SUM (SAL)

10 CLERK 1300
10 MANAGER 2450
10 PRESIDENT 5000
10 8750
20 CLERK 1900
20 ANALYST 6000
20 MANAGER 2975
20 10875

All About Grouping

group by grouping sets((deptno, job), deptno, ())

Page 16/18

Rob van Wijk

30 CLERK 950

30 MANAGER 2850
30 SALESMAN 5600
30 9400

29025

13 rows selected.

SQL> select * from table (dbms xplan.display cursor(null,null, 'iostats last'))
2 /

PLAN TABLE OUTPUT

SOL ID 32utu83m0fv8n, child number 0

select /*+ gather plan statistics */ deptno , job ,
sum(sal) from emp group by grouping sets((deptno, job), deptno, ())

Plan hash value: 52302870

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
/ 0 | SELECT STATEMENT / / 1 / 13 /00:00:00.01 | 7 |
/ 1 | SORT GROUP BY ROLLUP| / 1/ 11 | 13 /00:00:00.01 | 7 |
/ 2 | TABLE ACCESS FULL | EMP | 1/ 14 | 14 |/00:00:00.01 | 7 |

15 rows selected.

This query can be rewritten using a “group by rollup (deptno, job)”. The cost based optimizer is
smart enough to see that the grouping sets notation is really a rollup in disguise. It has
therefore rewritten the query in the optimization phase to a rollup, as you can see by the SORT
GROUP BY ROLLUP operation in step 1. Now a similar test for a cube expressed in grouping sets
notation:

SQL> select /*+ gather_plan statistics */

2 deptno
3 , Jjob
4 , sum(sal)
5 from emp
6 group by grouping sets((deptno, job), deptno, job, ())
7/

DEPTNO JOB SUM (SAL)

10 CLERK 1300

...<rows 2-17 deleted>...
29025

18 rows selected.

SQL> select * from table (dbms xplan.display cursor(null,null, 'iostats last'))
2 /

PLAN TABLE OUTPUT

SQL ID 9Y9wptn033f092m, child number 0

select /*+ gather plan statistics */ deptno , Jjob ,
sum(sal) from emp group by grouping sets((deptno, job), deptno, job,
0)

Plan hash value: 1142402200

| Id | Operation | Name | Starts | E-Rows | A-Rows |

/ 0 | SELECT STATEMENT / / 1 / 18 |

All About Grouping Page 17/18 Rob van Wijk

1	TEMP TABLE TRANSFORMATION	/ 1 / 18
2	MULTI-TABLE INSERT / / 1 / 2	
3 SORT GROUP BY ROLLUP / / 1 11	14	
4 TABLE ACCESS FULL	EMP / 1 14	14
5	LOAD AS SELECT / / 1 / 1	
6 SORT GROUP BY ROLLUP / / 1 1 4		
7 TABLE ACCESS FULL	SYS_TEMP OFD9D6605 _B69701	1 1 9
8	VIEW / / 1 2	18
9 VIEW / / 1 2	18	
10	UNION-ALL / / 1 / 18	
11 TABLE ACCESS FULL	SYS_TEMP OFD9D6605 _B69701	1 1 9
12 TABLE ACCESS FULL	SYS_TEMP OFD9D6606 B69701	1 1 9

26 rows selected.

Note again that I removed the columns A-time, Buffers, Reads and Writes from the plan output
for better readability. Here, we humans immediately see that the group by clause equals “group
by cube(deptno,job)”, but the cost based optimizer does not. We do see an interesting variation
of how grouping sets can be implemented. The temporary input and output table are still
present, but the way they are populated differs. The plan starts with a full table scan of the EMP
table. The 14 rows go through a SORT GROUP BY ROLLUP operation which leads to 14 rows.
This must mean that the SORT GROUP BY ROLLUP has computed the grouping sets
(deptno,job) and (job). Those grouping sets result in g and 5 group rows, which equal 14 rows in
total. The MULTI-TABLE INSERT at step 2 inserts those 14 rows into two tables. The g rows from
grouping set (deptno,job) are inserted into the input table SYS_TEMP_oFDgD6605_B69701, and
the 5 rows from grouping set (job) are inserted into the output table
SYS_TEMP_pFDgD6606_B69g701. Then at step 7, the input table containing 9 rows from grouping
set (deptno,job) is read and is used for a SORT GROUP BY ROLLUP of grouping sets (deptno)
and (). The 4 resulting rows are also inserted into the output table at step 5. In step 10, the
contents of both the input and the output table are union-all’d together to construct the final
result set of 18 rows.

For small queries, meaning the ones that should execute in less than a few seconds, the
overhead of setting up temporary input and output tables and populating them, might be too
much performance wise. Whether you need grouping sets notation depends on your functional

requirements. However, if you can spot a cube in your grouping sets, you’ll want to rewrite it
manually to a cube.

8 REFERENCES

1) http://www.juliandyke.com/Optimisation/Operations/Operations.html

All About Grouping Page 18/18 Rob van Wijk

