
Professional Software Development
using Oracle Application Express

Ciber Nederland
Rob van Wijk

rob.van.wijk@ciber.com

March 2013
Version 1.0

Summary
Software development involves much more than just producing lines of code. It is also
about version control, deployment to other environments, integrating code and unit testing.
It is appropriate to the profession of software development to have a framework in place
that handles all of this, in order for the developers to focus on the creative and fun part of
their job: producing excellent and well-designed code. Without such a framework, you
need to be cautious and deployments become more difficult and more error-prone. Which
means more time and money needlessly spent and a development process which is less
fun than it should be. Fortunately, these problems are well known and solutions are
already widely adapted. However, in database application development in general and in
APEX development specific, these practices are not so common, unfortunately. It is our
belief that database and APEX development should not be treated different and deserve a
similar framework. So thatʼs what we set out to do.

This paper describes how we develop new APEX applications in such a way that most of
the effort does gets spent on actually developing the code. If you can take advantage of
version control, if you can build and deploy your entire application in one step, can make a
daily build to continuously integrate all developed code, and can make sure your
developers have their own self-contained development environment, then the benefits are
many. Youʼll experience less errors, higher productivity and seamless software delivery
from your team. Refactoring code becomes painless since you can easily be assured the
changes wonʼt break the application. Overall quality goes up, ensuring a much longer
lifetime of the application.

This paper is the first in a series of three. The other two parts will focus on how to integrate
back-end and front-end unit testing into this framework and on how to roll out incremental
changes to your databases and your APEX application. This first part describes the base
setup, needed before you can implement the other two setups. It provides enough
information to get you started developing a new APEX application, albeit without the added
benefits of unit testing yet. If you already have some setup at your own environment, this
paper will hopefully point you to areas where you can improve.

Professional Software Development using Oracle Application Express" Page 1 of 17

Chapter 1: Version Control
“If you don't have source control, you're going to stress out trying to get programmers to
work together. Programmers have no way to know what other people did. Mistakes can't
be rolled back easily.” - Joel Spolsky [1]

The first and probably the easiest step towards a more professional development
environment, is to have version control. With version control in place, you have the history
of all the files in your application. The other benefit of version control is that it makes
sharing changes much easier. By frequently updating your checked out version of the
application, you automatically incorporate the changes made by your colleagues. The
chance that you will overwrite their code or vice versa, losing changes, is eliminated. Also,
a welcome side effect of having source control is that all source code will be checked out
on each developers computer, greatly reducing the risk of ever losing code.

There are lots of version control tools to choose from. We chose Subversion over git, CVS
and Serena Version Manager, simply because thatʼs the one with which most of us are
already familiar. And at the client side -on our laptops- we chose TortoiseSVN for Windows
and Cornerstone on the Mac. It doesnʼt really matter which version control tool you choose
for your own project, as long as you choose one.

In our strategy, version control is more than just history and having control over changes.
Version control is the single point of truth. It doesnʼt matter how source code looks like in
any database schema; the code in version control is what counts. PL/SQL code in the
database and even data in the development database doesnʼt matter. You can happily
throw away database objects, data or even perform “drop user X cascade” commands.
The developer can always restore the database without a DBA.

The other way round, if code is not in version control, it doesnʼt exist. As a result,
everything in your application should be under version control. Not only APEX object
definitions, table definitions and packages, but also privileges, master data, images, CSS,
installation scripts and so on. In short, everything that is needed to fully create the
application at the site of the client. If you have a database with APEX installed and the
APEX listener running, you can install the entire application from version control.

The structure of files and folders in version control
As adviced by Apache and as followed by many, we have the three standard directories in
our root: trunk, tags and branches. All our applications reside inside the trunk directory. We
aim for exactly the same folder structure for every APEX application. We split the
application in Subversion between two folders: apex and non-apex, for a reason explained
later in this chapter. The non-apex folder contains all database-objects and files which
support the APEX application. The structure of that folder is shown in figure 1:

Professional Software Development using Oracle Application Express" Page 2 of 17

Figure 1: Folder structure for non-APEX objects

The first thing youʼll notice, is the split up of our database objects in three parts: data, api
and ui. These folders correspond with three physically separate database schemas in
which the database objects reside. This layered approach is a choice weʼve made to
enhance security and flexibility in our applications. The three schemas only have a minimal
set of system privileges, just enough to create the object types needed for that layer. The
schemas do not even have a CREATE SESSION privilege. And their passwords are
generated with dbms_random.string(ʻaʼ,30). So objects need to be created from an
appropriately privileged schema that issues an “ALTER SESSION SET
CURRENT_SCHEMA = ...” command. Because of the schemas lack of a CREATE
SESSION privilege, we ensure that all installations are done via install scripts.

Schematically, the schema structure looks figure 2 below:

Professional Software Development using Oracle Application Express" Page 3 of 17

DATA

 tables, data, sequences, indexes,
optionally: triggers and packages for data logic

API

 packages for business logic
optionally: packages for data logic

UI

 views and packages with UI logic or workflow

Oracle Application Express

Figure 2: Schema structure

The UI schema is the parsing schema of the APEX application. It contains just the objects
needed for the APEX application to function. There are views, directly on top of tables in
the DATA layer and packages, either packages with UI logic or UI workflow packages
orchestrating business logic in the API layer. Data constraints are implemented
declaratively as much as possible. The data constraints that cannot be implemented
declaratively, are either implemented by database triggers and data logic packages in the
DATA layer, or as data logic packages in the API layer. There is quite a lot of debate
around the subject of where and how to implement that data logic. The idea is to ask the
client if he has preferences and -if not- leave the decision to our lead developer.

In the three layers, each database object is stored in its own file. For example, if the
application has 10 tables, we have 10 files with a .tab extension in the tables folder. There
are some decisions to make here about which object deserves its own file. For example,
do you place CREATE INDEX statements in its own .idx file or do they go along with the
table definition. These decisions are of minor importance, as long as you are consistent.

Then there is the files folder, where all images, cascading style sheets (CSS), javascript
libraries and less [8] source files are located that are needed for the files on the application
server.

APEX source files, under the apex folder, require some extra attention. Version control is
file based, but an APEX application exists inside the database as rows inside the APEX
repository tables. APEX helps to move your application to files by providing two
undocumented Java programs: APEXExport and APEXExportSplitter. Both are command

Professional Software Development using Oracle Application Express" Page 4 of 17

line versions of actions you can perform inside the Application Builder as well. APEXExport
produces one large file which you can use to import the entire application. The name of
that file is f[application ID].sql, for example f10001.sql. The second Java program,
APEXExportSplitter, creates a directory structure where each APEX component is in a
separate file, ideal for version control. Figure 3 below depicts a directory structure created
by APEXExportSplitter.

Figure 3: Folder structure of APEX application objects

When updating your working copy using svn update, you are incorporating the committed
changes of your colleagues into your working copy. Normally, when you have made some
changes to the source files as well, Subversion will nicely merge the two deltas. And when
the changes cannot be merged successfully -because they involve the same lines of code-
youʼll get a conflict, which you resolve manually. But with APEX, we -the mere mortal ones-
are not modifying the APEX source files, but we modify the database contents of the APEX
repository. So, when you are now performing an svn update, followed by an export and an
export split, youʼll overwrite the modifications of your colleagues in your working copy.
Meaning that a check in (svn commit) will now lose the changes of your colleague(s) will
be lost in the current version. And youʼll have to perform a tediously accurate manual
merge of the two deltas to restore the situation.

This overwriting cannot be fully prevented, but you can do something about it. We
implemented the easiest method:
* warning everyone for this scenario,
* choosing a directory structure that allows an easy svn update on all non-APEX objects.

Thatʼs why we have two directories, directly under the project directory: apex and non-
apex.

Professional Software Development using Oracle Application Express" Page 5 of 17

* a special apexupdate.sh script which correctly incorporates the changes of colleagues
into your working copy and your APEX workspace. This script ensures an export of your
APEX application and an svn update are always performed together in the right order.
The structure of this script looks like this:

rm -r $HOME/ciber/apexsofa/$1/apex/.
cd $HOME/ciber/apexsofa/$1
java oracle.apex.APEXExport\
 -db ourserver:1521:APEXSOFAO\
 -user apex_040200\
 -password secret\
 -applicationid $2\
 -skipExportDate
java oracle.apex.APEXExportSplitter f$2.sql
mv f$2 apex
cd apex
svn status | grep ^\? | awk '{print $2}' | xargs svn add
svn status | grep ^\! | awk '{print $2}' | xargs svn delete --force
svn update
sed s_@application_@$1/apex/application_\
 <install.sql\
 >../non-apex/install/install_apex_components.sql
cd ..
. non-apex/install/reinstall_apex

In this script, $1 equals the application code and name of the top directory, and $2 is the
APEX application id of the application that is to be exported. It removes all files from the
apex directory in your working copy and replaces them with freshly exported data from
your APEX workspace, and it registers the new files (svn add) and deletes the obsolete
files (svn delete). And only now that the working copy is up to date with your delta, we
perform the svn update, incorporating the delta of your colleagues into your up-to-date
working copy. The last step is to reinstall the APEX application in the database, by deleting
the application in your workspace and installing it back.

The script works perfectly when svn update doesnʼt produce conflicts. But when it does
produce conflicts, the installation of the APEX application in your workspace, wonʼt work,
because files with conflicts have conflict markers in them that wonʼt compile/run. In this
case, you just have to resolve the conflicts like you would normally do and run
reinstall_apex again.

A nice enhancement, would be to make the script check the revision number your APEX
application is based on, against the revision number of your working copy. If you have
done an svn update on your apex folder, the revision number of your working copy would
be higher than the one on which your APEX application is based on. In that case the script
could be stopped, allowing the developer to revert the svn update by doing a svn update -r
[revision number APEX is based on].

Professional Software Development using Oracle Application Express" Page 6 of 17

Chapter 2: Self-contained Development Environments
“The developer should be free to experiment as much as possible, safe in the knowledge
that the worst that could happen is they destroy only their own environment and not impact
the productivity of others.” - Nick Ashley [2]

The next step addresses a very common issue, which most Oracle database developers
have likely experienced more than once: working with several developers under the same
database schema. The troubles with this are many. For example, not being able to test
your code when a colleague has just invalidated the schema while developing his latest
enhancement. Or losing test data because someone has dropped and recreated a table.
Or when a colleague accidently reinstalls the entire schema, while not having updated his
working copy and thereby losing your changes and corrupting your test results. Problems
increase with the number of developers and with diminishing communication. I have found
the scenario of working together in one schema troublesome even in a small RUP team of
just 2-3 developers. So, for us, an absolute must for our environment is to have a
completely separate working environment for each developer. The integration issues that
may arise from working separately, are discussed in chapter 4.

A separate working environment in an APEX environment means that every developer has
his own APEX workspace which holds the applications that he works on. And, keeping in
mind that in our way of working, database application needs three schemas DATA, API
and UI, we give each developer three database schemas as well. We named these
developer schemas after the username, with a suffix “_DATA”, “_API” and “_UI”. The
username can follow any convention you like -within the boundaries of what Oracle
allows-, but should not exceed 25 characters because Oracle doesnʼt allow usernames
longer than 30 characters. In my case for example, the three developer schemas are
called RWIJK_DATA, RWIJK_API and RWIJK_UI.

The developer schemas have the same minimal set of privileges as the application
schemas described in chapter 1. The APEX application gets coupled to the user schemas
by setting up the developers UI schema as the parsing schema in their APEX workspace.
As with the application schemas, you cannot use these schemas to log in; they lack the
CREATE SESSION privilege and (superfluous) the password is unknown because it was
generated with “dbms_random.value(ʻaʼ,30)”. So, each developer also needs a user he
can use to log on and to use for installing objects in the other schemas. This username is
without any suffix, so in my case: RWIJK. This user has the DBA role. The development
environment is their environment, after all. And itʼs impossible to do any real harm, since
version control is leading. Using the “ALTER SESSION SET CURRENT_SCHEMA = ...”
mechanism, this user can install in the three developer schemas.

To be able to use the same scripts to install in either the application schema or in one of
the developers schemas, the synonym and privilege scripts in Subversion are
parameterized. For example, a script for granting select privileges on a table to the UI
layer contains a “grant select on [tablename] to &SCHEMAPREFIX._ui;”. And a synonym
script contains a “create synonym [tablename] for &SCHEMAPREFIX._data.[tablename]”.
Both scripts start with a “define SCHEMAPREFIX=ʼ&1ʼ “.

The object ID challenge
Having a separate APEX workspace for each developer imposes an extra challenge since
you cannot import the same APEX application into two different workspaces in the same
Professional Software Development using Oracle Application Express" Page 7 of 17

APEX instance. APEX uses instance-wide unique internal object IDʼs. When you import
the application for the second time, youʼll violate unique constraints on these object IDʼs.
You can see the object IDʼs in the export file, where you can recognize them as the long
numbers, that are always followed by “ + wwv_flow_api.g_id_offset”. See for example the
excerpt from an export file below:

declare
 h varchar2(32767) := null;
begin
wwv_flow_api.create_page_item(
 p_id=>1922330433247936 + wwv_flow_api.g_id_offset,
 p_flow_id=> wwv_flow.g_flow_id,
 p_flow_step_id=> 101,
 p_name=>'P101_USERNAME',
 p_data_type=> '',
 p_is_required=> false,
 p_accept_processing=> 'REPLACE_EXISTING',
 p_item_sequence=> 10,
 p_item_plug_id => 1922223885247934+wwv_flow_api.g_id_offset,
 p_use_cache_before_default=> '',
 p_prompt=>'Username',
 p_display_as=> 'NATIVE_TEXT_FIELD',
 p_lov_display_null=> 'NO',
 p_lov_translated=> 'N',
 p_cSize=> 40,
 p_cMaxlength=> 100,
 p_cHeight=> null,
 p_begin_on_new_line=> 'YES',
 p_begin_on_new_field=> 'YES',
 p_colspan=> 2,
 p_rowspan=> 1,
 p_label_alignment=> 'RIGHT',
 p_field_alignment=> 'LEFT',
 p_field_template=> 1920401041247919+wwv_flow_api.g_id_offset,
 p_is_persistent=> 'Y',
 p_attribute_01 => 'N',
 p_attribute_02 => 'N',
 p_attribute_03 => 'N',
 p_item_comment => '');

end;
/

In this example you see wwv_flow_api.g_id_offset being added to the IDʼs at parameters
p_item_plug_id and p_field_template.

Since version 4.0, APEX provides the package APEX_APPLICATION_INSTALL, which
allows modifications to application attributes during installation. For any exported
application, you can dictate in which workspace under which application ID an import
should take place. You can circumvent using the same object IDʼs during import, by using
the Apex_Application_Install.Generate_Offset procedure. This procedure sets the offset
value to some arbitrary large value, which is returned by the wwv_flow_api.g_id_offset
public global variable. This way, you ensure that the metadata for the application definition
does not collide with other metadata on the instance.

The trouble with the Generate_Offset procedure is, that once a developer is done with his
enhancements and starts exporting and splitting the application that was imported with
Generate_Offset, almost the entire application will be seen as modified by version control,
just because all the object IDʼs have changed. So Generate_Offset is not really suited for

Professional Software Development using Oracle Application Express" Page 8 of 17

our job. We need a way to transform the export files back to the original IDʼs. So, instead
of using Generate_Offset, we use the procedure Set_Offset, and we store a specific
unique offset number for each developer. For the offset value, we used 10,000,000,000
and 20,000,000,000 and so on. This way, collisions of IDʼs among developers wonʼt occur.

In a comment on his blog [6], Joel Kallman discloses the SQL that shows the three parts
by which an offset id is generated:

select to_number
 (to_char(wwv_seq.nextval) ||
 lpad(substr(abs(wwv_flow_random.rand), 1, 5),5, '0') ||
 ltrim(to_char(mod(abs(hsecs),1000000),'000000'))
)
 into g_curr_val
 from sys.v_$timer;

A new id will always have a new sequence value in the first part (wwv_seq.nextval) and
the developers offsets differ not more than 99,999,999,999. So they only differ in the
second part of the number, thereby making collisions for new IDʼs impossible.

When importing an application we issue a apex_application_install.set_offset call with the
stored offset number. The piece of code we run under the parsing schema looks like this:

declare
 cn_schemaprefix constant varchar2(25) := '&SCHEMAPREFIX';
 cn_applicatie constant varchar2(30) := '&APPLICATIE';
begin
 apex_application_install.set_workspace_id
 (meta.mta_admin.apex_werkruimte_id(cn_schemaprefix)
);
 apex_application_install.set_application_id
 (meta.mta_admin.apex_applicatie_id(cn_applicatie,cn_schemaprefix)
);
 apex_application_install.set_offset
 (p_offset => meta.mta_admin.apex_id_offset(cn_schemaprefix)
);
 apex_application_install.set_schema(upper(cn_schemaprefix) || '_UI');
 apex_application_install.set_application_alias
 (case lower(cn_schemaprefix)
 when lower(cn_applicatie) then
 cn_applicatie
 else
 cn_applicatie || '_' || cn_schemaprefix
 end
);
end;
/
@@install_apex_components

After all application attributes have been set, we run the install_apex_components.sql,
which is the install.sql generated by APEXExportSplitter, that calls all splitted files in
succession. In Figure 4 we saw this line:

sed s_@application_@$1/apex/application_\
 <install.sql\
 >../non-apex/install/install_apex_components.sql

which sets the relative directory structure of the called files according to our chosen
structure.

Professional Software Development using Oracle Application Express" Page 9 of 17

When exporting an application, inside the apexupdate.sh script, between the export and
the export split, we use the following extra command on the export file to subtract the
stored offset from the idʼs

sed -E 's/([0-9]+)([]*\+[]*wwv_flow_api.g_id_offset)/^\1^\2/'
<f$2.sql | awk -F^ '{if(length($3)>0) {print $1 $2-ENVIRON["offset"] $3} else
{print $0}}' >f$2.sql

The sed command places the id between two tilde symbols (^) and the awk command
subtracts the value in environment variable “offset” from the id. Lines that do not contain a
wwv_flow_api.g_id_offset, will go through unchanged. Now, an application export file will
only contain the real differences. This is important because now version control will exactly
show you which parts of your APEX application have changed with each revision number.

When each developer has their own self-contained development environment, he can now
do whatever he feels is necessary, including dropping and recreating his entire
environment. No longer will this hinder your colleagues. And if you mess up your
environment you should be able to easily reinstall everything, which leads us to the next
step.

Professional Software Development using Oracle Application Express" Page 10 of 17

Chapter 3: One-Step Build
“On good teams, there's a single script you can run that does a full checkout from scratch,
rebuilds every line of code, makes the EXEs, in all their various versions, languages, and
#ifdef combinations, creates the installation package, and creates the final media --
CDROM layout, download website, whatever.” - Joel Spolsky [1]

According to wikipedia, a software build is the process of converting source code files into
standalone software artifacts. In a database environment, the standalone software artifact
is not an executable, but deployed database schemas and a fully working APEX
application behind a chosen URL. Note that by this definition you can also speak of build-
and-deploy, but for sake of simplicity it is simply called a build here.

If a build takes more than one step, you are giving the developers a list to memorize for
building the application. And by that, you have given them a chance to fail. Itʼs not
knowledge worth remembering that you should first run a backup, then clean up three
database schemas, import the APEX application, load your images and restart the HTTP
server. Or some other arbitrary sequence unique to your situation, but you get the idea. It
should be one step that does it all.

So, this one-step build means that we should have a script in place which can get us from
an empty database to a fully working APEX application. We call this script install.sql. And
vice versa, to get to an empty database (for the application), we have a script uninstall.sql.
Since the application consists of three parts, the APEX part, the supporting-database-
objects-part and the files-on-the-application-server-part, we also developed intermediate
scripts called install_apex.sql, install_db.sql and install_files.sh and their counterparts
uninstall_apex.sql, uninstall_db.sql and uninstall_files.sh. This means that install.sql does
nothing but call install_db.sql, install_apex.sql and install_files.sh, and likewise,
uninstall.sql calls only uninstall_apex.sql, uninstall_db.sql and uninstall_files.sh.

The individual scripts explained
An install_db.sql is a handcrafted script in which you install each database object in the
right order. Tools exist to generate such a script, but then youʼd have to either prefix the
names of the scripts to ensure the right order, or the tools rather randomly installs
everything and finishes with compiling the entire schema. In the latter case, the install will
look messy with intermediate compilation errors, which we do not want to occur when we
give an application to a client. Below is a trimmed down version of one of our install_db.sql
scripts to give you an idea:

whenever sqlerror exit failure
column current_schema new_value curschema
select sys_context('userenv','current_schema') current_schema
 from dual
/
define SCHEMAPREFIX='&1'
define APPLICATION='sca'
prompt ***
prompt Install db-part of &APPLICATION in schemas &SCHEMAPREFIX._data,
&SCHEMAPREFIX._api and &SCHEMAPREFIX._ui
prompt ***

define tables_path='&APPLICATION./non-apex/data/tables/'
define sequences_path='&APPLICATION./non-apex/data/sequences/'
define indexes_path='&APPLICATION./non-apex/data/indexes/'
define data_path='&APPLICATION./non-apex/data/data/'
define privs_path='&APPLICATION./non-apex/data/privileges/'

Professional Software Development using Oracle Application Express" Page 11 of 17

define view_path='&APPLICATION./non-apex/ui/views/'

set verify off

alter session set current_schema = &SCHEMAPREFIX._data
/
@@&tables_path.SCA_OPNAMES.sql
@@&tables_path.SCA_METERSTANDEN.sql
@@&sequences_path.SCA_MSD_SEQ1.sql
@@&sequences_path.SCA_ONE_SEQ1.sql
@@&indexes_path.MSD_ONE_FK1_I.sql
@@&privs_path.privileges.sql &SCHEMAPREFIX

alter session set current_schema = &SCHEMAPREFIX._api
/
remark This application doesn’t have an API layer yet.

alter session set current_schema = &SCHEMAPREFIX._ui
/
@@&view_path.sca_v_meterstanden.vw &SCHEMAPREFIX
@@&view_path.sca_v_opnames.vw &SCHEMAPREFIX

alter session set current_schema = &CURSCHEMA
/
set verify on
undefine SCHEMAPREFIX
undefine APPLICATION
undefine CURSCHEMA
whenever sqlerror continue

The SCHEMAPREFIX substitution variable allows this script to be executed in the
application schema, as well as in the developer schemas.

The uninstall_db.sql script simply drops all database objects. It is the inverse of
install_db.sql. One difference with the install.sql is also that the uninstall.sql is allowed to
produce errors. In other words, it does not contain the “whenever sqlerror exit failure”
statement. Errors may occur when a colleague has created database objects, which he
added to the uninstall_db.sql script. When you bring your working copy up to date, youʼll
get the new uninstall_db.sql, which will try to uninstall the database object that doesnʼt
exist in your schema yet. Or in general an error during uninstall may occur, when
something unexpected happens during the install and youʼre left with some half installed
application. In such a case, the uninstall should always be able to remove all thatʼs left.

The install_apex.sql script has already been discussed in Chapter 2. The
uninstall_apex.sql uses the four scripts that are generated during the APEXExportSplitter
program and looks like this:

declare
 cn_schemaprefix constant varchar2(25) := '&SCHEMAPREFIX';
 cn_applicatie constant varchar2(10) := '&APPLICATIE';
begin
 apex_application_install.set_workspace_id
 (meta.mta_admin.apex_werkruimte_id(cn_schemaprefix)
);
 apex_application_install.set_application_id
 (meta.mta_admin.apex_applicatie_id(cn_applicatie,cn_schemaprefix)
);
end;
/
@sca/apex/application/init.sql
@sca/apex/application/set_environment.sql
@sca/apex/application/delete_application.sql
@sca/apex/application/end_environment.sql

Professional Software Development using Oracle Application Express" Page 12 of 17

Finally, the install_files.sh copies all images, css files and javascript libraries to the docroot
of the application server. We created separate directories next to the /i/ folder where APEX
puts its own files. Each application gets its own directory and so does each developer.
Within each developers directory, there is an application directory for the applications heʼs
working on. Using an APEX substitution variable, which we called APP_IMAGE_PREFIX,
we can reference the files from APEX. The install_apex.sql uses a little post import script
to set the APP_IMAGE_PREFIX to the right value.

ssh -t -t $USER@$HOST <<END_SCRIPT
cd $DOCROOT_HOST
if [! "$SCHEMAPREFIX" == "$APPLICATIE"]; then
 if [! -d "$SCHEMAPREFIX"]; then
 mkdir $SCHEMAPREFIX
 fi
 cd $SCHEMAPREFIX
fi
if [! -d "$APPLICATIE"]; then
 mkdir $APPLICATIE
fi
cd $APPLICATIE
if [! -d img]; then
 mkdir img
fi
if [! -d css]; then
 mkdir css
fi
if [! -d js]; then
 mkdir js
fi
exit
END_SCRIPT

if ["$SCHEMAPREFIX" == "$APPLICATIE"]; then
 SUBDIR=$APPLICATIE
else
 SUBDIR=$SCHEMAPREFIX/$APPLICATIE
fi

scp -r $APPLICATIE/non-apex/files/img/* $USER@$HOST:$DOCROOT_HOST$SUBDIR/img/
scp -r $APPLICATIE/non-apex/files/css/* $USER@$HOST:$DOCROOT_HOST$SUBDIR/css/
scp -r $APPLICATIE/non-apex/files/js/* $USER@$HOST:$DOCROOT_HOST$SUBDIR/js/

The uninstall_files.sh simply does a “rm -r” on the application server directory. For these
scripts to work, each developer has to have ssh connection to the application server in
place, with private and public keys, so no passwords need to be typed in when issuing an
ssh or scp command.

In production and user acceptance databases, you are not going to do full installs, except
for the very first time. But when new developers enter the team and when someone
messes up their environment, you want them to be able to install their own development
environment from scratch. For this reason, you want to keep the full install and uninstall
scripts right. And you do so, by constantly testing the full install from scratch, at least on
the development environment and preferably also on test.

Professional Software Development using Oracle Application Express" Page 13 of 17

Chapter 4: Continuous Integration
“Communication is one of the key factors in software development and one of CI's most
important features is that it facilitates human communication” - Martin Fowler [4]

The downside of every developer having its own APEX workspace and database
schemas, is that multiple versions of the application will arise in each environment. These
versions will have to be integrated at some point in time. And you do not want to postpone
this integration for too long. The longer you wait, the harder integration will become. And a
Big Scary Merge [4] is awaiting you.

Continuous integration addresses this issue. It is a software development practice where
you avoid big integration phases at the end of a development effort, by doing numerous
small merges of code. The issues will then be less complex, easier to fix and therefore
less time consuming. Overall software quality will improve. The mantra here is to integrate
and merge often, fail early and fix fast.

In our APEX environment, a typical workflow for a developer looks like this:
1. update working copy of the application with all changes of his colleagues, by issuing our

apexupdate.sh script for the APEX objects and a regular svn update on the non-apex
folder

2. make code changes
3. install the changes in the developers environment by running apexupdate.sh again if

your code changes involves APEX, otherwise only reinstall_db.sql and/or
reinstall_files.sh and test the changes

4. update working copy of the application with all the changes and test again if you have
incorporated committed changes of one of your colleagues

5. svn commit the code changes

If you forget step 4 and a colleague has changed some files you were working on as well,
Subversion will notify you during the commit that your version is out of date, and you are
forced to do step 4 anyway.

Integrating the work of your colleagues in your working copy can be done as often as you
wish, especially if it takes a little longer for you to make the code changes. A good practice
is to start your day with a Subversion update.

Even though the application may have worked fine in your environment, this does not
mean the application will work fine anywhere. For example, itʼs still possible that your
database schema contains a package that you did not put under version control. So your
version works fine, but if anyone integrates your changes, their version will break. You
have broken the build. To detect such mistakes, we need an automated build which installs
in the application schemas.

Implementing an automated build with Hudson
We have chosen for Hudson for the automated build. Hudson is an extensible continuous
integration server. For each application we define a project in Hudson, which runs our
reinstall.sql in the application schemas each night. If the automatic build fails, all
developers receive an email. The break of the build should now be fixed before doing
anything else. Hudson shows you the output of the reinstall.sql script, which will show you
what went wrong. The figures below show how the console output looks like.
Professional Software Development using Oracle Application Express" Page 14 of 17

Figure 8a: Top of Hudson console output of the automated build

Figure 8b: End of Hudson console output of the automated build

Our developers can also refresh their environments together with the automated build.
This only happens if they indicate that they want so. The developer can always install and
uninstall his own environment, so this is just for convenience to keep the development
environment up to date, should you want so. Automatically installing the latest version of
the application in a development environment should be done with care, since it may just
overwrite your work. A developer should only choose to automatically build his own
environment each night if he has the discipline to always end the day committing his work.
This way he can immediately begin working the next day. We have implemented the
automatic building the development environments in our META schema. This schema
contains three tables, one containing the developers, one containing the applications and
an intersection table containing the application copies. A row in the application copies table
means that a developer is working on that application. This table holds two indicators:

Professional Software Development using Oracle Application Express" Page 15 of 17

• an indicator whether the APEX application in his environment should be refreshed each
night

• an indicator whether the database schemas in his environment should be refreshed each
night

For any indicator that is set to ʻYʼ, the build script also does a fresh install of that part (apex
and/or non-apex) in the development environment.

Now that we have version control, self-contained development environments, a one-step-
build and continuous integration fully setup, you are ready for the next steps: including unit
tests for both the PL/SQL code in the database and the APEX application code and rolling
out incremental changes to other environments.

References and further reading
[1] Joel Spolsky - The Joel Test: 12 Steps to Better Code
http://www.joelonsoftware.com/articles/fog0000000043.html

[2] Nick Ashley - Taking control of your database development
http://dbdeploy.com/documentation/taking-control-of-your-database-development-white-
paper/

[3] Martin Fowler - Continuous Integration
http://martinfowler.com/articles/continuousIntegration.html

[4] Martin Fowler - FeatureBranch
http://martinfowler.com/bliki/FeatureBranch.html

[5] Scott W. Ambler - The Process of Database Refactoring: Strategies for Improving
Database Quality
http://www.agiledata.org/essays/databaseRefactoring.html

[6] Joel R. Kallman - YABAOAE blogpost titled APEX_APPLICATION_INSTALL
http://joelkallman.blogspot.nl/2010/07/apexapplicationinstall.html

[7] Oracle Documentation - APEX_APPLICATION_INSTALL
http://docs.oracle.com/cd/E17556_01/doc/apirefs.40/e15519/apex_app_inst.htm

[8] Wikipedia - LESS (stylesheet language)
http://en.wikipedia.org/wiki/LESS_%28stylesheet_language%29

Professional Software Development using Oracle Application Express" Page 16 of 17

http://www.joelonsoftware.com/articles/fog0000000043.html
http://www.joelonsoftware.com/articles/fog0000000043.html
http://dbdeploy.com/documentation/taking-control-of-your-database-development-white-paper/
http://dbdeploy.com/documentation/taking-control-of-your-database-development-white-paper/
http://dbdeploy.com/documentation/taking-control-of-your-database-development-white-paper/
http://dbdeploy.com/documentation/taking-control-of-your-database-development-white-paper/
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/bliki/FeatureBranch.html
http://martinfowler.com/bliki/FeatureBranch.html
http://www.agiledata.org/essays/databaseRefactoring.html
http://www.agiledata.org/essays/databaseRefactoring.html
http://joelkallman.blogspot.nl/2010/07/apexapplicationinstall.html
http://joelkallman.blogspot.nl/2010/07/apexapplicationinstall.html
http://docs.oracle.com/cd/E17556_01/doc/apirefs.40/e15519/apex_app_inst.htm
http://docs.oracle.com/cd/E17556_01/doc/apirefs.40/e15519/apex_app_inst.htm
http://en.wikipedia.org/wiki/LESS_%28stylesheet_language%29
http://en.wikipedia.org/wiki/LESS_%28stylesheet_language%29

Acknowledgements
Thank you Marcel Hoefs, Erdal Aslan en Etienne Hamers for providing valuable feedback
on this paper. Thanks to Michiel van Kessel for installing and configuring Red Hat
Enterprise Linux, the Oracle databases, APEX, Glassfish and the APEX Listener, and
Ronald Rood for patiently answering all my Linux and shell scripting questions. And last
but not least thanks to the entire APEXSoFa team for exploring and testing all aspects of
our APEXSoFa with me.

About the author
Rob van Wijk is an Oracle database developer who works with Oracle technology since
1995. He currently works as a principal consultant at Ciber Nederland. His main areas of
expertise are the Oracle database, SQL, PL/SQL, performance and APEX. He writes
about these subjects on his blog at http://rwijk.blogspot.com. Heʼs a regular presenter at
Oracle conferences, is an Oracle ACE and he teaches an Expert Seminar called “SQL
Masterclass” for Oracle University.

Professional Software Development using Oracle Application Express" Page 17 of 17

http://rwijk.blogspot.com
http://rwijk.blogspot.com

